<u>N18 – Atomic Structure</u> <u>and Periodicity</u> Periodic Trends

Link to YouTube Presentation: https://youtu.be/RwCDvBtAGbo

<u>N18 – Atomic Structure</u> <u>and Periodicity</u> Periodic Trends

Target: I can describe and explain various patterns/ trends visible on the periodic table by using concepts such as shielding and nuclear attraction.

Patterns work really well!

Mendeleev predicted the properties of lots of elements!

	Gallium (eka-aluminum)		Ge	ermanium (eka-silicon)	
	Mendeleev's predicted properties	Actual properties		Mendeleev's predicted properties	Actual properties
Atomic mass	About 68 amu	69.72 amu	Atomic mass	About 72 amu	72.64 amu
Melting point	Low	29.8 °C	Density	5.5 g/cm ³	5.35 g/cm ³
Density	5.9 g/cm ³	5.90 g/cm ³	Formula of oxide	XO ₂	GeO ₂
Formula of oxide	X_2O_3	Ga_2O_3	Formula of chloride	XCl_4	GeCl ₄
Formula of chlorie	de XCl ₃	GaCl ₃			

Summary of Periodic Trends

IONIZATION ENERGY ELECTRONEGATIVITY ELECTRON AFFINITY* EFFECTIVE NUCLEAR CHARGE - Z_{EFF}

	1	RADIUS																		
	NG		1 1.00754 3 3	2A 4 Be											5 B	6 C	A 7 N	6A 8 0	7A 9 F	2 He 4.002002 10 Ne 20.1787
δ	ā		11 Na 22:965768	12 Mg 24.0050	3B	4B	58	6B	7B		- 8B -		1B	2B	13 Al 26.9815386	14 Si 28.0855	15 P 30.973762	16 S N2.005	17 CI 15.453	58 Ar 10.348
Ē	Ш		19 K 29-2960	20 Ca 41.078	21 Sc 44.9559/2	22 TI 49,607	23 V 50.3H15	24 Cr 51,9901	25 Mn 54.00045	28 Fe	27 Co 58.831485	28 Ni 51.004	29 Cu 63.546	30 Zn 65.30	31 Ga 69.729	32 Ge 72.64	33 As 34,82180	34 Se 21.00	35 Br 78.904	36 Kr 65.790
5	I		37 Rb 85.4678	38 Sr 87.62	39 Y M-30585	40 Zr 91,224	41 Nb 92,90008	42 Mo 8.8	43 Tc M	44 Ru	45 Rh	46 Pd 105.42	47 Ag	48 Cd	49 In	50 Sn 116.710	51 Sb (2030)	52 Te 97.60	53 125.00447	54 Xe
2	0)		55 Cs	58 Ba	57-71	72 Hf	73 Ta	74 W	75 Re 186.207	78 Os	77 Ir 110.317	78 Pt	79 Au	80 Hg	81 TI 204.3823	82 Pb 2073	83 Bi 205.0040	84 Po	85 At	86 Rn
		ŀ	87 Fr [120]	88 Ra (296)	89-103 Actinides	104 Rf (HF7)	105 Db (268)	106 Sg (271)	107 Вh µта	108 Hs (279)	109 Mt µ79	110 Ds [201]	111 Rg (2011	112 Cn pes	113 Uut (244	114 FI [280]	115 Uup рмі	116 Lv [280]	117 Uus (214	118 Uuo (214)

П

RG

Summary of Periodic Trends

Summary of Periodic Trends

Atomic Radius

- Several ways to measure
 - o Van der Waals radius = nonbonding
 - **Covalent radius = bonding radius**
- All give slightly different values
- Atomic radius is an average radius of an atom based on measuring large numbers of elements and compounds.

Atomic Radius

Atomic Radius Trend

KEY POINTS TO DESCRIBE GOING DOWN A GROUP:

- Can <u>NOT</u> just say "because there is more shielding" – no vocab dropping!
- The size of an atom is related to the *distance* the valence electrons are from the nucleus and the *attractive forces*.
- You <u>must</u> specifically mention that the higher energy level is bigger volume and further away from nucleus.
 - yes this seems obvious... **but** if you want points be careful!

Radius – Reasoning

Increases down a group (top to bottom)

Moving down a group:

• Adds a (principal) energy level.

The larger the principal energy level an orbital is in:

- $\circ~$ The larger its volume.
- \circ The farther the e⁻ (most probable distance) is from nucleus.
- $\circ~$ The less attraction it will have for the nucleus.
- The more shielding the valence electrons experience from inner core electrons.

Therefore: The larger the radius

Atomic Radius Trend

KEY POINTS TO DESCRIBE GOING ACROSS A PERIOD:

- Can <u>NOT</u> just say "because there is greater effective nuclear charge" – no vocab dropping!
- The size of an atom is related to the *distance* the valence electrons are from the nucleus and the *attractive forces*.
- As you go to the right there are more protons added BUT shielding <u>doesn't</u> increase since the e's are added to the same energy level.
- You <u>must</u> specifically mention that this results in greater nuclear attraction due to increased # of protons (nuclear charge) and therefore a smaller radius
 - yes this seems obvious...
 - *but* if you want points be careful!

<u>Radius – Reasoning</u>

Decreases Across a Period (Left to Right) Going to the right:

- Adds a proton each time
- No addition of shielding (adding e- to same energy level)

Adding a proton with no increased shielding:

- Increases effective nuclear charge on the valence e's
- The stronger the attraction it will have for the nucleus.

The stronger the nuclear attraction:

• The closer they are to the nucleus

Therefore: smaller radius

Ionic Radius Trend

- lons in same group have the same charge.
- Ion size increases down column.
 - Higher valence shell, larger radius
- Cations < neutral atoms
- Anion > neutral atoms.

Ionic Radius Trend

Cations

Higher (+) charge, smaller radius

• Mg⁺ radius > Mg²⁺ radius

Anion

Higher (-) charge, larger radius

• O⁻ radius < O²⁻ radius

Ionic Radius Trend

Isoelectronic = same electron configuration

For isoelectronic species compare the # of protons to # e-

• More protons, more attraction, smaller radius

<u>Radius</u>

Irregularities

Radius doesn't change very much going across d-block

- New electrons are being added to an INNER (core) energy level
 - $\odot\,$ Yes you are adding an extra proton to shrink radius
 - BUT you are also adding shielding!
 - Result is yes radius will decrease but not by as much as you might expect.

Ionization Energy

Ionization Energy is the minimum energy needed to remove an electron from an atom or ion

- In the gas state
- Endothermic process takes energy
- Valence electron easiest to remove, lowest IE

1st Ionization Energy – Energy to remove e⁻ from neutral atom $M_{(g)} + IE_1 \rightarrow M^{1+}_{(g)} + 1$ e-

2nd Ionization – Energy to remove e⁻ from 1+ ion $M^{1+}_{(g)} + IE_2 \rightarrow M^{2+}_{(g)} + 1e$ -

Decreases down a group

- Each time you go down you have another energy level
- Inner core electrons shield outer electrons
- \circ Increased radius
- Decreased nuclear attraction
- Easier to take away an electron
- Decreased IE

Increases across a period (left to right)

- Each time you go to the right you add a proton
- No significant increase in shielding b/c adding e- to same energy level – they do not shield as well as inner levels
- $\,\circ\,$ Therefore, the radius decreases
- \circ Increase in nuclear attraction
- $\,\circ\,$ Harder to take one away
- \circ Increased IE

Irregularities

Half filled and totally filled sublevels (orbital set)

- Extra repulsions of electrons in paired orbitals
 - Makes it easier to remove an electron
 - $\,\circ\,$ Lower IE than expected

Moving to a p orbital (Mg \rightarrow Al)

- p orbital does not penetrate as much as an s orbital
 - $\,\circ\,$ Less nuclear attraction
 - $\,\circ\,$ Lower IE than expected

Increases for successive e⁻'s taken from same atom

- Each time you take one away, atom gets smaller.
- Smaller atom means greater nuclear attraction to valence e-
- Harder to take away another e-
- Increases IE

Element	IE ₁	IE ₂	IE ₃	IE ₄
Na	496	4560		
Mg	738	1450	7730	
AI	578	1820	2750	11,600

Successive Ionization Energies

Large jump in IE shows when you begin removing core e's

- Helps you figure out most likely charge on element
- The charge is the number of ionizations that happened BEFORE the large jump

TABLE 8.1 Successive Values of Ionization Energies for the Elements Sodium through Argon (kJ/mol)								
Element	IE ₁	IE ₂	IE ₃	IE ₄	IE ₅	IE ₆	IE ₇	
Na	496	4560						
Mg	738	1450	7730		Core e	lectrons		
AI	578	1820	2750	11,600				
Si	786	1580	3230	4360	16,100			
Р	1012	1900	2910	4960	6270	22,200		
S	1000	2250	3360	4560	7010	8500	27,100	
CI	1251	2300	3820	5160	6540	9460	11,000	
Ar	1521	2670	3930	5770	7240	8780	12,000	

Electron Affinity – Δ in energy when neutral atom gains e⁻

- Gas state
- <u>Usually</u> energy is released (exothermic, negative value) $M_{(g)} + 1e^{-} \rightarrow M^{1-}_{(g)} + EA$
- Some alkali metals and all noble gases are endothermic
- More energy released, the larger the electron affinity (larger negative = larger EA)

Alkali metals decrease electron affinity down the column.

- But not all groups do
- Generally irregular increase in EA from second period to third period

"Generally" increases across period

- Becomes more negative from left to right
- \circ Not absolute
- $_{\odot}\,$ Group 5A often lower EA than expected extra electron must pair
- Groups 2A and 8A generally very low EA because added electron goes into higher energy level or sublevel

Highest EA in any period = halogen

Very irregular pattern compared to other PT Trends

Electron Affinities (kJ/mol)								
1A							8A	
Н							He	
-73	2A	3A	4A	5A	6A	7A	>0	
Li -60	Be >0	B -27	C -122	$egin{array}{c} \mathbf{N} \\ > 0 \end{array}$	O -141	F -328	Ne >0	
Na -53	Mg >0	Al -43	Si -134	P -72	S -200	Cl -349	Ar >0	
K -48	Ca -2	Ga -30	Ge -119	As -78	Se -195	Br -325	Kr >0	
Rb -47	Sr -5	In - 30	Sn -107	Sb −103	Te -190	I -295	Xe >0	

Electronegativity and Polarity

Electronegativity

The ability of an atom to attract bonding electrons to itself is called electronegativity.

Increases across period (left to right) Decreases down group (top to bottom)

- Fluorine most electronegative
- Francium least electronegative
- Noble gas atoms are not assigned values.
- Opposite of atomic size trend.

The larger the difference in electronegativity, the more polar the bond.

• Negative end toward more electronegative atom.

Electronegativity

Electronegativity Difference & Bond Type

Pure Covalent

- Difference in electronegativity between bonded atoms is <u>0</u>
- Equal sharing

Nonpolar Covalent

• Difference in electronegativity is **0.1 to 0.4**

Polar Covalent

• Difference in electronegativity is **0.5 to 1.9**

lonic

• Difference in electronegativity is larger than or equal to 2.0

Electronegativity Difference & Bond Type

Electronegativity Difference & Bond Type

TABLE 9.1 The Effect of Electronegativity Difference on Bond Type									
Electronegativity Difference (Δ EN)	Bond Type	Example							
Small (0-0.4)	Covalent	Cl ₂							
Intermediate (0.4–2.0)	Polar covalent	HCI							
Large (2.0+)	Ionic	NaCl							

Bond Dipole Moments

Dipole – A substance with a partial (+) and partial (-) end **Dipole moment** - μ , - a measure of bond polarity.

• Directly proportional to the size of the partial charges and directly proportional to the distance between them. $\mu = (q)(r)$

Magnetic Properties

Paramagnetic – Atom or ion with a net magnetic field

- Result of unpaired electrons in orbitals
- Will be weakly attracted to a magnetic field

Diamagnetic – Atom or ion with no magnetic field

- Result of all paired electrons in orbitals
- o Slightly repelled by a magnetic field

Ferromagnetic – Group of atoms in a solid crystal or lattice that keeps its magnetism even when there is no magnetic field applied

Electron Configuration and Magnetism

Why care about Paramagnetism?

NMR Machine – Helps determine the structure of molecules MRI – Applied to images of the body

Why care about Paramagnetism?

NMR Machine – Helps determine the structure of molecules MRI – Applied to images of the body

Link to YouTube Presentation

https://youtu.be/RwCDvBtAGbo